Level One Algebraic Cusp Forms of Classical Groups of Small Rank

Ebook Details

Authors

Gaetan Chenevier, David Renard

Year 2015
Pages 122
Publisher Amer Mathematical Society
Language en
ISBN 9781470410940
File Size 993.12 KB
File Format PDF
Download Counter 84
Amazon Link

Ebook Description

The authors determine the number of level $1$, polarized, algebraic regular, cuspidal automorphic representations of $\mathrm{GL}_n$ over $\mathbb Q$ of any given infinitesimal character, for essentially all $n \leq 8$. For this, they compute the dimensions of spaces of level $1$ automorphic forms for certain semisimple $\mathbb Z$-forms of the compact groups $\mathrm{SO}_7$, $\mathrm{SO}_8$, $\mathrm{SO}_9$ (and ${\mathrm G}_2$) and determine Arthur's endoscopic partition of these spaces in all cases. They also give applications to the $121$ even lattices of rank $25$ and determinant $2$ found by Borcherds, to level one self-dual automorphic representations of $\mathrm{GL}_n$ with trivial infinitesimal character, and to vector valued Siegel modular forms of genus $3$. A part of the authors' results are conditional to certain expected results in the theory of twisted endoscopy.