Foundations of Arithmetic Differential Geometry

Ebook Details

Authors

Alexandru Buium

Year 2017
Pages 344
Publisher American Mathematical Society
Language en
ISBN 9781470436230
File Size 2.58 MB
File Format PDF
Download Counter 156
Amazon Link
Google Book Link
Download Now

Ebook Description

The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is "intrinsically curved"; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before. QR Code Online